Dissection of Regulatory Networks that Are Altered in Disease via Differential Co-expression
نویسندگان
چکیده
منابع مشابه
Dissection of Regulatory Networks that Are Altered in Disease via Differential Co-expression
Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression of a set of genes di...
متن کاملGene co-expression networks via biclustering Differential gene co-expression networks via Bayesian biclustering models
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...
متن کاملDifferential gene co-expression networks via Bayesian biclustering models
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...
متن کاملLearning regulatory programs that accurately predict differential expression with MEDUSA.
Inferring gene regulatory networks from high-throughput genomic data is one of the central problems in computational biology. In this paper, we describe a predictive modeling approach for studying regulatory networks, based on a machine learning algorithm called MEDUSA. MEDUSA integrates promoter sequence, mRNA expression, and transcription factor occupancy data to learn gene regulatory program...
متن کاملRanking differential Hubs in gene Co-Expression Networks
Identifying the genes that change their expressions between two conditions (such as normal versus cancer) is a crucial task that can help in understanding the causes of diseases. Differential networking has emerged as a powerful approach to detect the changes in network structures and to identify the differentially connected genes among two networks. However, existing differential network-based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS Computational Biology
سال: 2013
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1002955